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Introduction
An important research objective in biology and the medical sciences is the search for genes 

whose change in relative expression is an indication of a particular state of an organism such 

as cancer. These genes are known as biomarkers. Microarray experiments have played an 

important role in the identification of this type of genes. The successful identification of 

potential biomarker genes can lead to an eventual clinical confirmation and thus to enhanced 

disease diagnosis and prognosis capabilities. 

Based on our own experience with microarray data, the following challenges regarding 

microarray experiments can be identified: (1) the available data is highly dimensional in terms 
4of the number of genes to be studied (~10 ) while showing a scarce number of replicates, (2) 

there is a rather large variation across replicates, (3) the data is not normally distributed and 

does not exhibit similar variances, (4) there is a considerable number of missing observations 

in the majority of experiments, (5) the data is commonly found already being normalized or 

nonlinearly transformed. All of these complicate the detection of potential biomarkers. 

Furthermore, when it comes to data analysis, the following are also important challenges: (i) 

there is no standard way to compare results for gene selection or identification between 

studies, (ii) even with the same data (and sometimes with the same technique) different 
1researchers end up with different sets of genes , thereby leading to a large number of potential 

biomarkers to be investigated, the research of which could prove lengthy and very expensive. 

Truly integrated work across disciplines is not frequent in most microarray analysis works. 

Biology and Medicine experts are usually left with the burden of using coded analysis tools 

with a series of parameters of statistical, computational or mathematical nature that 
2significantly affect the outcome of the software packages . This leads to issues in results 

Abstract

High throughput biological experiments such as DNA microarrays are very powerful tools 

to understand and characterize multiple illnesses. These types of experiments, however, 

have also been described as large, complex, expensive, and hard to analyze. For these 

reasons, analyses with linear assumptions are frequently bypassed for more sophisticated 

procedures with higher complexity from the onset. In this work, a search procedure for 

potential biomarkers using data from microarray experiments is proposed under purely 

linear assumptions. Linearity offers the possibility of verifiability, convergence and 

compactness in the selection of a set of potential biomarkers. The method shows a high 

discrimination rate and does not require the adjustment of parameters by the user, thus 

preserving analysis objectivity and repeatability. A case study in the identification of 

potential biomarkers for cervix cancer, as well as a validation study for colon cancer is 

presented to illustrate the application of the proposed procedure.
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reproducibility and comparability between studies. 

These challenges motivate the search for microarray analysis techniques from which 

consistent results can be achieved across several experiments and analysts, particularly for 

the identification of potential biomarkers. 

The purpose of this work is to introduce an approach to identify potential biomarkers from 

the analysis of microarray experiments based solely on linear models and assumptions. One 

of the uses proposed for this method is to establish a baseline of comparison for the many 

sophisticated methods with underlying nonlinear assumptions. The use of linearity throughout 

the analysis makes the method verifiable, repeatable across different analysts, and 

computationally tractable. In the following sections, the general analysis strategy is described 

and two illustrative case studies are presented, the first one in cervix cancer and the second 

one in colon cancer. 

Analysis Strategy

Fig. 1 schematically shows the strategy proposed in this work. Each step is explained below. 

Step 1: Microarray Experiment. The process begins with a microarray experiment with m1 

tissues in state one (Control – Cancer-free) and m2 tissues in state two (Cancer) 

characterized in n genes. The intersection of each of the n genes with each of the m1+m2 

tissues quantifies the relative expression of that particular gene in the selected tissue.

Step 2: Represent each gene with multiple performance measures. Different analysts 

measure the difference in relative genetic expression across two states differently. P_values 

are common examples of these measures. A  p_value can be computed from the application of 

a statistical comparison test of a gene’s relative expression in the Control and Cancer states. 

The Mann-Whitney nonparametric test for the difference of medians of two populations is an 

instance of such comparisons. Finding an additional p_value for the same gene–since at least 

two measures are required for each gene- can be done through the removal of a couple of 

tissues from the microarray experiment under analysis. 

Step 3: Apply Data Envelopment Analysis. Data Envelopment Analysis (DEA) finds the 

convex envelop of a particular data set consistently and without the need of varying 

parameters manually. If, for example, two p_values are used to represent each of the n genes 

in the experiment, then DEA can be used to find the envelope conformed by the dominating 

genes following the minimization direction of both p_values. Finding such envelope is done 

through the application of a linear programming formulation, which is the first instance where 

linearity becomes useful. Fig. 2 schematically shows how this envelope is formed by a series 

of lines, or in more mathematically correct terms, a series of hyperplanes. Indeed, if only two 

performance measures are used, it is possible to identify the said envelope graphically with 

the use of a simple ruler. 

Step 4: Select genes in a series of efficient frontiers. The envelopes found through DEA are 

formally known as efficient frontiers. When an efficient frontier is found, then the solutions 

lying on it can be removed (as a layer of an onion), to then find the efficient frontier right 

underneath it. Following this scheme, several layers can be chosen containing different 

numbers of genes. These genes, having been found through the simultaneous optimization of 

the chosen performance measures, are the most likely candidates to be biomarkers. These 

will be referred to as efficient genes. 

Step 5: Create an experimental design to vary the presence of the efficient genes. An 

experimental design that uses the presence of the genes as controllable variables is built in 

this step. Each variable can take a value of 0 or 1 (0 for absence of the gene). In this case, one 

run within the experiment corresponds to a combination of efficient genes. Later in the 

method, this design is used to record the effect of the presence of the said genes in a linear 

classifier.

Step 6: At each experimental design point, measure classification performance through 

linear discriminant analysis. Using the experimental design from the previous step, at each 

combination of efficient genes it is possible to obtain a measure of classification performance 

using a linear classifier through linear discriminant analysis. A linear classifier of this kind will 

always converge to the same position, thus preserving results consistency. At the end of this 

step, then, a complete experimental design relating classification rate with the absence or 

presence of the potential biomarkers is available. 
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Step 7: Fit a 1st order linear regression model. With the complete experimental design, it is 

possible to fit a 1st order linear regression model. This model will relate classification 

performance (response) to the absence or presence of the efficient genes (independent 

variables) in an empirical function. 

Step 8: Apply integer linear programming to choose the potential biomarkers that maximize 

classification performance. An optimization problem can be set up in this stage. This problem 

entails finding the combination of efficient genes –recall that each gene is represented by a 

variable that can take values of 0 or 1 to indicate absence or presence of that gene- that 

maximizes the classification performance predicted by the regression model from the 

previous step.

The linear models and methods explained previously favor repeatability and auditability of 

results. Furthermore, the set of selected genes do not depend upon the setting of any 

parameters by the user. 

Figure 1. Analysis Strategy based on Linear Models

Case Study on Cervix Cancer

This case study helps to illustrate the application and the performance of the proposed 

procedure. 

Step 1. The microarray database under analysis is related to cervix cancer and was 
3compiled by Wong et al . The database consists of 8 control tissues and 25 cervix cancer 

tissues, all of them with relative expression level readings for 10,690 genes.

Step 2. The Mann-Whitney nonparametric two-sided test for comparison of medians of two 

populations was used to generate two different p_values per gene, following a leave-one-

tissue-out strategy. This strategy focuses on extracting a particular tissue associated with one 

state. By removing a tissue, a statistical replicate is effectively deleted from the set, thereby 

forcing a p_value that is different to the original one. Thus, two different p_values are 

effectively created to represent each gene. The selection of the tissue to be removed to create 

a distinct matrix is performed randomly in this instance, however, it can be selected based on 

the magnitude of its variance (e.g. remove the tissue with the largest variance). 

Step 3. The Data Envelopment Analysis model used for this case study was the Banks-
4Charnes-Cooper (BCC) model . This is a linear programming model with the following 

associated formulations (P1 and P2):
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(P1)

T maxµ Y  + µ  - µ   0 0 0
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+ -µ,ν, µ , µ    0 0
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The optimal values of the decision variables correspond to the interceptor and the partial 

first derivatives (with respect of each performance measure involved) of a supporting hyper 

plane lying on top of extreme points of the data set under analysis. At the end of the analysis, a 

piece-wise frontier is distinguishable as shown in Fig. 2. Do notice that, if the analysis requires 

only two performance measures, this piece-wise frontier can be detected through the 

superposition of a ruler directly onto the graph. 

Figure 2. Representation of genes characterized through two different p_values. Only the case with 2 

p_values has a convenient graphical representation, but the analysis can be extended to as many 

dimensions as performance measures selected.

Step 4. The first ten frontiers were kept for this analysis containing a total of 28 genes. It is 

important to note the discrimination rate shown by the method already at this point: a reduction 

of four orders of magnitude in the number of genes to analyze.

Step 5. In this step a composite experimental design involving 28 binary variables (one per 

gene in the shortlist from the previous step), was created and used. The experimental design 

consisted of 122 different runs in which each gene could take a value of 0 (absence) or 1 

(presence). In the next step, at each run the analyst will build a linear classifier using only the 

genes identified with a value of 1 and measure its classification performance. Three different 

experimental designs form the total of 122 runs. The first design (DOE1) is an orthogonal array 

consisting on 47 runs with 10 to 18 genes each; the second design (DOE2) has 47 runs with 1 

to 28 genes generated randomly; and the third design (DOE3) consisted of 28 runs, each with 

only one gene. Fig. 3 shows the composite experimental design.
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Figure 3. Composite Experimental Design. Values of 1 to indicate the presence of the gene in the 

associated column are shown shaded.

Step 6. Linear discriminant analysis was carried out using the combination of genes 

prescribed by each run of the composite design to record the classification performance of a 

linear classifier. Depending on the absence and presence of certain genes in each run, a 

range of different classification performances results. It is expected that classification 

performance improves with more efficient genes present. Using an analogy, a person has a 

better chance to be identified correctly if more distinctive characteristics of such person are 

provided. It is also important, however, to search for the minimal number of distinctive 

characteristics that allows correct classification. This last objective is aided by the next step.
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Tables 1-3. Classification performance (CP) for each experimental design

Step 7. With the experimental design complete, a linear regression of the classification 

performance as a function of the presence or absence of the 28 genes is built. Noticing that 

most of the classification performances give a 100% correct classification, two different 

regression models were constructed (from two different samples). The first one included all of 

the 122 original runs (DOE 1 + DOE 2 + DOE 3). For the second model, the sample was 

reduced to only 38 runs, using the 28 runs from DOE 3 and 10 random ones from DOE 2. This 

was done with the idea of having samples showing a higher sensitivity to the presence of the 

different genes, as opposed as having mostly runs with a 100% classification performance. 

With the regression, the relationship between each important gene and the classification 

performance can be seen as in Equation (1), with variables defined as in Equation (2).

 

DOE 1

 

DOE 2

 

DOE 3

 

  

No.

 

CP

 

No.

 

CP

 

No.

 

CP

 

1

 

0.37

 

48

 

0.37

 

96

 

0.909

 

2

 

1

 

49

 

1

 

97

 

0.879

 

3

 

1

 

50

 

1

 

98

 

0.879

 

4

 

1

 

51

 

1

 

99

 

0.909

 

5

 

1

 

52

 

0.909

 

100

 

0.879

 

6

 

1

 

53

 

0.939

 

101

 

0.909

 

7

 

1

 

54

 

0.939

 

102

 

0.818

 

8

 

1

 

55

 

0.939

 

103

 

0.879

 

9

 

1

 

56

 

1

 

104

 

0.818

 

10

 

1

 

57

 

0.939

 

105

 

0.879

 

11

 

1

 

58

 

1

 

106

 

0.879

 

12

 

1

 

59

 

1

 

107

 

0.818

 

13

 

1

 

60

 

1

 

108

 

0.848

 

14

 

1

 

61

 

1

 

109

 

0.879

 

15

 

1

 

62

 

0.97

 

110

 

0.879

 

16

 

1

 

63

 

0.909

 

111

 

0.848

 

17

 

1

 

64

 

1

 

112

 

0.939

 

18

 

1

 

65

 

1

 

113

 

0.879

 

19

 

1

 

66

 

1

 

114

 

0.848

 

20

 

1

 

67

 

1

 

115

 

0.788

 

21

 

1

 

68

 

1

 

116

 

0.879

 

22

 

1

 

69

 

1

 

117

 

0.909

 

23

 
1

 
70

 
1

 
118

 
0.758

 

24
 

1
 

71
 

1
 

119
 

0.818
 

25

 
1

 
72

 
1

 
120

 
0.879

 26

 

1

 

73

 

1

 

121

 

0.818

 
27

 

1

 

74

 

1

 

122

 

0.818

 

28

 

1

 

75

 

1

 

123

 

0.879

 

29

 

1

 

76

 

1

 
  

30

 

1

 

77

 

1

 
  

31

 

1

 

78

 

1

 
  

32

 

1

 

79

 

1

 
  

33

 

1

 

80

 

1

 
  

34

 

1

 

81

 

1

 
  

35

 

1

 

82

 

1

 
  

36

 

1

 

83

 

1

 
  

37

 

1

 

84

 

1

 
  

38

 

1

 

85

 

1

 
  

39

 

1

 

86

 

1

 
  

40

 

1

 

87

 

1

 
  

41

 

1

 

88

 

1

 
  

42

 

1

 

89

 

1

 
  

43

 

1

 

90

 

1

 
  

44

 

1

 

91

 

1

 
  

45

 

1

 

92

 

1

 
  

46

 

1

 

93

 

1

 
  

47

 

1

 

94

 

1

 
  

 

95

 

1
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Table 4. Linear regression model using 122 experimental designs

Table 4 represents the first regression model. A positive regression coefficient indicates that 

the gene associated to it increases classification performance. Twenty-three different genes 

have positive coefficients, and thus, contribute to improve classification performance when 

using all 122 runs to build this first regression model. 

Variable

 

Coefficient Symbol

 

Regression Coefficient

 

  

β0

 

0.8868

 

g1

 

β1

 

0.0152

 

g2

 

β2

 

0.0027

 

g3

 

β3

 

0.0097

 

g4

 

β4

 

0.0146

 

g5

 

β5

 

0.003

 

g6

 

β6

 

0.0083

 

g7

 

β7

 

-0.0034

 

g8

 

β8

 

0.0051

 

g9

 
β9

 
0.0001

 

g10 β10  0.0054  
g11

 
β11

 
0.0008

 g12

 

β12

 

-0.002

 
g13

 

β13

 

0.012

 

g14

 

β14

 

-0.0027

 

g15

 

β15

 

0.0138

 

g16

 

β16

 

0.0089

 

g17

 

β17

 

0.0166

 

g18

 

β18

 

0.0145

 

g19

 

β19

 

0.0089

 

g20

 

β20

 

0.012

 

g21

 

β21

 

0.0137

 

g22

 

β22

 

0.0105

 

g23

 

β23

 

-0.0068

 

g24

 

β24

 

-0.0025

 

g25

 

β25

 

0.0093

 

g26

 

β26

 

0.005

 

g27

 

β27

 

0.0079

 

g28

 

β28

 

0.0158
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Table 5. Linear regression model using 38 experimental designs

After reducing the dataset to only 38 runs the model becomes more targeting. The model 

represented in Table 5, shows that 17 genes can be used to improve classification 

performance. 

Step 8. Using the two linear regression models described before, the optimization model is 

to find the combination of genes (through the use of binary variables) to maximize the 

predicted classification performance using Linear Integer Programming. Formulation P3 

shows the resulting optimization problem.

        

       (P3)

       

         

                             

Variable Coefficient Symbol Regression Coefficient

β0 0.854962

g1 β1 0.02688

g2

 

β2

 

0.01723

 

g3

 

β3

 

0.04222

 

g4

 

β4

 

0.02565

 

g5

 

β5

 

0.02926

 

g6

 

β6

 

0.05826

 

g7

 

β7

 

-0.0345

 

g8

 

β8

 

-0.00439

 

g9

 

β9

 

-0.03323

 

g10

 
β10

 
0.0265

 

g11
 

β11
 

0.0189
 

g12 
β12  

-0.01878
 

g13

 

β13

 

0.03906

 g14

 

β14

 

0.02826

 

g15

 

β15

 

0.04174

 

g16

 

β16

 

-0.02205

 

g17

 

β17

 

0.04799

 

g18

 

β18

 

0.00947

 

g19

 

β19

 

-0.00714

 

g20

 

β20

 

-0.01286

 

g21

 

β21

 

0.01577

 

g22

 

β22

 

0.02561

 

g23

 

β23

 

-0.08053

 

g24

 

β24

 

-0.02284

 

g25 β25 0.00324

g26 β26 -0.03274

g27 β27 -0.02898

g28 β28 0.0265
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Table 6. Optimization models

Such optimization resulted in the identification of 17 important genes, that is, potential cervix 

cancer biomarkers. These are shown on Table 6, marked with an ‘x’.  Also, a hierarchy of 

genes can be found using this procedure by sorting them by decreasing magnitude of their 

regression coefficients. This helps visualize what genes and in which order are most 

necessary and significant when it comes to detect Cervix Cancer, as shown in Table 7. In this 

table, CP_Predicted comes from the Classification Performance estimated using the Linear 

Regression from model 2. CP_Real is the Classification Performance obtained by applying 

the linear discriminant analysis method.

Index

 

Accession 
Number

 

Optimization

 

1

 

AA488645

 

x

 

2

 

H22826

 

x

 

3

 

AI553969

 

x

 

4

 

T71316

 

x

 

5

 

AA243749

 

x

 

6

 

AA460827

 

x

 

7

 

AA454831

   

8

 

AA913408, 
AA913864

 
x

 

9  AA487237  x  
10

 
AA446565

 
x

 11

 

H23187

 

x

 
12

 

AI221445

   

13

 

R36086

 

x

 

14

 

AA282537

   

15

 

N93686

 

x

 

16

 

R91078

 

x

 

17

 

R44822

 

x

 

18

 

AI334914

 

x

 

19

 

R93394

 

x

 

20

 

AA621155

 

x

 

21

 

AA705112

 

x

 

22

 

R52794

 

x

 

23

 

AA424344

   

24

 

H69876

   

25

 

H55909

 

x

 

26

 

W74657

 

x

 

27

 

AI017398

 

x

 

28

 

H99699

 

x
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Table 7. Hierarchy of genes to obtain a maximized classification performance

Case Study on Colon Cancer

As part of our study and to reinforce the performance of the proposed method we proceeded 

to validate the steps illustrated before with another microarray database. The microarray 

database under analysis for this study was related to colon cancer, made available by Alon, et 
5al . This database consisted of 22 healthy tissues and 40 colon cancer tissues, all of them with 

expression level readings of 2000 genes. We kept only 27 genes of the 2000 original genes 

prevenient of the first ten frontiers founded through DEA. Table 8 shows the resulting efficient 

genes selected through DEA analysis.

Hierarchy

 

Genes

 

Classification 
Performance

 

Predicted

 

Classification 
Performance

 

Real

 

1

 

6

 

0.91

 

0.91

 

2

 

17

 

0.96

 

0.97

 

3

 

3

 

1.00

 

0.94

 

4
 

15
 

1.00
 

0.97
 

5  13  1.00  0.97  
6

 

5

 

1.00

 

1.00

 7

 

14

 

1.00

 

1.00

 
8

 

1

 

1.00

 

1.00

 

9

 

10

 

1.00

 

1.00

 

10

 

28

 

1.00

 

1.00

 

11

 

4

 

1.00

 

1.00

 

12

 

22

 

1.00

 

1.00

 

13

 

11

 

1.00

 

1.00

 

14

 

2

 

1.00

 

1.00

 

15

 

21

 

1.00

 

1.00

 

16

 

18

 

1.00

 

1.00

 

17

 

25

 

1.00

 

1.00
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Table 8. Efficient genes prevenient of DEA analysis

After the identification of these 27 efficient genes, a composite experimental design was 

created to explore the presence/absence effect of these on a linear classifier. The 

experimental design involved 27 binary variables and formed 37 runs. The first design 

consists of 10 runs using between 18 to 24 genes generated randomly; and the second design 

consisted of 27 runs, each with only one gene activated. Fig. 4 shows the resulting designs.

Figure 4. Composite Experimental Design (10 runs using between 18 to 24 genes generated randomly 

and 27 runs with only one gene activated).Values of 1 to indicate the presence of the gene in the 

Genes

 

Frontier

 

Accession

 

g1

 

1

 

M22382

 

g2

 

1

   

R87126

 

g3

 

2

 

H08393

 

g4

 

2

 

R36977

 

g5

 

3

 

J05032

 

g6

 

3

 

M26383

 

g7

 

4

 

X63629

 

g8

 

4

 

H40095

 

g9

 
4

 
Z50753

 
g10

 
4

 
M63391

 g11

 

5

 

J02854

 
g12

 

5

 

X12671

 

g13

 

6

 

U09564

 

g14

 

6

 

H43887

 

g15

 

6

 

M76378

 

g16

 

7

 

M36634

 

g17

 

7

 

T86473

 

g18

 

8

 

H06524

 

g19

 

8

 

R84411

 

g20

 

8

 

X14958

 

g21

 

9

 

T92451

 

g22

 

9

 

M26697

 

g23

 

9

 

T71025

 

g24

 

10

 

X86693

 

g25

 

10

 

T47377

 

g26

 

10

 

U30825

 

g27

 

10

 

D31885
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associated column are shown shaded

Using the composite experimental design we measured and recorded the classification 

performance through linear discriminant analysis as shown in Table 9.

Table 9. Classification performances for experimental designs

After the completion of the experimental designs a linear regression model was used to 

relate the classification performance with the absence or presence of each of the 27 efficient 

genes. Fifteen of these genes had a positive regression coefficient, thereby becoming 

potential colon cancer biomarkers. Table 10 shows a list of these potential colon cancer 

biomarkers.

Run

 

Classification 
Performance

 

1

 

0.968

 

2

 

0.952

 

3

 

0.952

 

4

 

0.919

 

5

 

0.919

 

6

 

0.919

 

7

 

0.952

 

8

 

0.887

 

9

 

0.919

 

10

 

0.935

 

11

 

0.694

 

12

 

0.823

 

13

 

0.71

 

14

 

0.726

 

15

 

0.629

 

16

 

0.597

 

17

 

0.71

 

18

 

0.661

 

19

 

0.758

 

20
 

0.855
 

21

 
0.79

 22

 

0.71

 
23

 

0.694

 

24

 

0.758

 

25

 

0.823

 

26

 

0.774

 

27

 

0.661

 

28

 

0.726

 

29

 

0.677

 

30

 

0.694

 

31

 

0.79

 

32

 

0.677

 

33

 

0.774

 

34

 

0.774

 

35

 

0.742

 

36

 

0.677

 

37

 

0.645
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Table 10. Genes needed to obtain a 100% classification performance identified through their 

positive regression coefficients

Once the linear regression analysis was completed, this equation was used to find the 

combination of genes that maximize the classification performance applying integer linear 

programming. The use of this tool allowed us to obtain the hierarchy of genes as in the 

previous example. This hierarchy is shown in Table 11. 

Variable

 

Coefficient 
Symbol

 

Regression 
Coefficient

 

1

 

β0

 

0.716

 

g1

 

β1

 

-0.00379

 

g2

 

β2

 

0.081

 

g3

 

β3

 

0.01

 

g4

 

β4

 

-0.02

 

g5

 
β5

 
-0.1

 

g6  β6  -0.08  
g7

 
β7

 
-0.01

 g8

 

β8

 

-0.03

 
g9

 

β9

 

0.027

 

g10

 

β10

 

0.134

 

g11

 

β11

 

0.068

 

g12

 

β12

 

0.01

 

g13

 

β13

 

-0.05

 

g14

 

β14

 

0.077

 

g15

 

β15

 

0.074

 

g16

 

β16

 

0.036

 

g17

 

β17

 

-0.05

 

g18

 

β18

 

0.01

 

g19

 

β19

 

-0.05

 

g20

 

β20

 

0

 

g21

 

β21

 

0.016

 

g22

 

β22

 

-0.01

 

g23

 

β23

 

0.035

 

g24

 

β24

 

0.01

 

g25

 

β25

 

0.028

 

g26

 

β26

 

0
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Table 11.  Hierarchy of genes to obtain a maximized classification performance

Conclusions
In this work, a strategy to detect potential biomarkers from the analysis of microarray 

experiments is proposed. The strategy is based solely on linear models and assumptions and, 

as such, is intended as a solid baseline to explore if more complex non-linear based methods 

bring better results. Its consistent convergence and lack of parameter setting by the users 

make this method a very competitive and attractive one for repeatability and auditability. This 

is especially important in high throughput experiments and in a highly interdisciplinary field 

like bioinformatics. A case study involving the analysis of a microarray database on cervix 

cancer and validation study on colon cancer were presented to demonstrate the capabilities of 

the strategy. Indeed, in the studies it was possible to discriminate among more than 10,000 

genes to converge to less than 30 potential biomarkers in each case.
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Hierarchy

 

Genes

 

Prediction

 

Classification 
Performance-

Real

 

1

 

10

 

0.85

 

0.855

 

2

 

2

 

0.931

 

0.855

 

3

 

14

 

1

 

0.855

 

4
 

15
 

1
 

0.855
 

5  11  1  0.855  
6

 
16

 
1

 
0.855

 7

 

23

 

1

 

0.839

 
8

 

25

 

1

 

0.871

 

9

 

9

 

1

 

0.903

 

10

 

21

 

1

 

0.903

 

11

 

3

 

1

 

0.919

 

12

 

12

 

1

 

0.935

 

13

 

24

 

1

 

0.935

 

14

 

18

 

1

 

0.935

 

15

 

27

 

1

 

0.935
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