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Introduction
There is an increasing need for studies on how educational interventions affect student 

performance (Raudenbush & Sadoff, 2008; Spybrook, 2007). A study’s ability to assess the 

efficacy and efficiency of educational interventions depends on its hypothesis development, 

experimental design, controlled experimental trials, identification of the population of interest, 

and implementation (Sloane, 2008). The most challenging task is to obtain valid 

measurements of interventions in order to assess the effect of intervention (Raudenbush & 

Sadoff, 2008; Sloane, 2008). Measures of the classroom interventions that students receive 

can be subject to measurement errors (Raudenbush & Sadoff, 2008) in data collection 

through large-scale surveys and observational studies (Cochran,1963, 1965, 1969, 1972; 

Rosenbaum, 2002).

Structural equation modeling (SEM, Bollen, 1989) incorporates the latent variable to 

account for measurement errors on manifest variables. Kaplan (1999) applied propensity 

score stratification into the Multiple Indicators Multiple Causes (MIMIC) model to deal with 

measurement error on the dependent variable for group difference estimation. However, 

propensity score matching was not conducted. Furthermore, the propensity score was 

estimated through observed covariates that may have measurement error. This Monte Carlo 

study uses an SEM framework (Jöreskog & Sörbom, 1996) to examine the effectiveness of 

matching through the latent variable and through manifest variables with measurement 

Abstract

Based upon a two-level structural equation model, this simulation study compares latent 

variable matching and matching through manifest variables. Selection bias is simulated on 

latent variable and/or manifest variables along with different magnitudes of reliability. 

Besides factor score matching and Mahalanobis distance matching, we examined two 

types of propensity score matching on: “naïve” propensity score derived from manifest 

covariates, and  “true” propensity score derived from latent factor. Results suggest that 1) 

Mahalanobis distance matching works less effectively than propensity/factor score 

matching; 2) propensity score and factor score matching performed the best if both 

treatment and control groups have high reliability; 3) matching through manifest variables 

is optimal and preferable if latent composite variable is under-representative; 4) when 

latent variable represents the manifest variables well, latent variable matching is 

preferable and more efficient than matching on respective manifest variables; and 5) 

matching options such as caliper matching and replacement matching interact with the 

magnitude of reliability and matching with replacement on a smaller caliper performs the 

best for more reliable measures.
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errors.

Literature Review
Measurement Errors 

Measurement errors (Cochran, 1968b) of observed (manifest) variables have been well 

studied in linear regression (Fuller, 1987), logistic regression (Carroll, Ruppert, Stefanski & 

Crainiceanu, 2006; Spiegelman, Schneeweiss & McDermott, 1997), and survey sampling 

(Biemer et al., 2004; Fuller, 1995; Hansen, Hurwitz  & Bershad, 1961; Mahalanobis, 1946); 

however, few studies have been conducted in matching since Cochran and Rubin (1973) 

reviewed the effect of measurement errors on bias reduction (Rubin, 1973a).

Measurement issues can have serious impact on the findings of a study because they 

reduce the efficiency of adjustment (Cochran, 1968a; Cochran, 1965). While the literature is 

replete with guidelines on how to use propensity score analysis (Pan & Bai, 2015) to estimate 

treatment effect, there is little research on how to adjust the measurement errors to examine 

bias reduction on covariates after matching (Jakubowski, 2015). Most researchers simply 

analyze and estimate propensity scores by taking the covariates as the perfect measures 

(Cochran, 1957; Cochran & Rubin, 1973). Recent propensity score analyses mainly examine 

how covariates with measurement errors affect treatment effect estimation though bias-

correction or imputation (Battistin & Chesher, 2014; Webb-Vargas, Rudolph, Lenis, Murakami 

& Stuart, 2015), or inverse probability weight (McCaffrey, Lockwook, & Setodji 2011; Steiner, 

Cook & Shadish 2011). Propensity score matching was rarely conducted in these studies for 

bias reduction analysis. 

Measurement Errors and Bias

Bias occurs when the estimate (testing score or observed treatment effect) differs from the 

value being estimated (true score or true effect) through sampling (Särndal, Swensson & 

Wretman, 2003). Bias due to measurement errors (Fuller, 1987) can occur in outcome Y 

and/or covariates X (Carroll et al., 2006; Cochran & Rubin, 1973). Thus, the outcome in an 

intervention effect model is a sum of three parts (Wooldridge, 2002): 1) the effect of 

intervention variety, 2) the effect of initial bias due to covariates X, and 3) the random 

measurement error. If participants are not randomly assigned to intervention groups 
1(Cochran, 1969, 1972), then a study often has problems of selection bias  (Heckman, 1979), 

indicating the initial unbalanced treatment and control groups in term of covariates X. 

Selection bias attenuates the treatment effect estimate and misleads one's conclusions 

(Campbell & Stanley, 1966).

Bias Reduction and Propensity Score Matching

Because the “golden rule" of randomization is generally broken in observational studies 

(Cochran, 1963, 1965, 1969, 1972; Rosenbaum, 2002), bias reduction techniques have been 

developed for causal inference (e.g., Rubin, 1974, 1978). These techniques include 

Cochran's three approaches including pairing, balancing, and stratification (Cochran, 1953), 

post-hoc matching (Abadie & Imbens, 2006, 2007; Rubin, 1973a, b, 1976a, b, 1979, 1980), 

analysis of covariance (e.g., Cochran, 1957, 1969), inverse propensity score weighting 

(Angrist & Pischke, 2009; Horvitz & Thompson, 1952; McCaffrey & Hamilton, 2007), statistical 

modeling with adjustment (e.g. WLS estimation in HLM frame work, see Hong and 

Raudenbush, 2006), and double robust estimation using regression adjustment and inverse 

propensity score weighting (Kang & Schafer, 2007). The most recent development can also 

be referred to literature and materials in Pan and Bai (2015).

Post-hoc matching depends on the summary measure, a functional composite of 

covariates (Rubin, 1985). The most commonly used composites in matching include the 

Mahalanobis distance (e.g., Rubin, 1980) and the propensity score (Rosenbaum and Rubin, 

1983). Propensity score matching is a post-hoc bias reduction method, which has been 

commonly used on observational data to approximate the individual-randomized trials to 

study a treatment effect of interest (Cochran, 1953, 1968a; Cochran & Rubin, 1973; 

Rosenbaum & Rubin, 1983; Rubin, 1973a,b). Propensity score matching (Rosenbaum & 

Rubin, 1983) is the most commonly used bias reduction technique of post-hoc sampling 

(Cochran, 1953; Rubin, 1973a,b, 1976a,b, 1979, 1980) in causal inference and program 

evaluation. A propensity score (P) is a conditional probability that an individual belongs to the 

treatment group (Rosenbaum & Rubin, 1983). It is generally estimated by using the logit 
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model of ln[P/(1-P)] β`X, indicating the natural logarithm of the odds (i.e., the ratio of P to 1 - P)    = 

is functionally related to the background covariates (X, in a vector format). The propensity 

score estimated by a function of , summarizes the distribution information of all ...................

potential covariates (Rosenbaum & Rubin, 1983; Rubin, 1985). Using the propensity score, a 

researcher can match participants from the treatment group with participants from the control 

group, so that the treatment group and control group can be balanced. This approach can 

significantly reduce bias in observational study (Rosenbaum, 2005; Rosenbaum & Rubin, 

1985; Rubin & Thomas, 1992; Rubin & Waterman, 2006). It also improves the accuracy of the 

average treatment effect estimate (Abadie & Imbens, 2006), and facilitates causal inference 

(Greenland, 2004). 

Attenuated Bias Reduction Rate Due to Measurement Errors

Measurement errors attenuate the regression coefficient β of covariates X on outcome Y 

(Fuller, 1987; Jöreskog & Sörbom, 1996). Let β ̃ be the attenuated regression coefficient. It 

has |β ̃|<|β| and β ̃= β × R in the bivariate regression (Cochran & Rubin, 1973). R is the 

attenuation rate due to measurement errors in the covariate x. Bias reduction rate on 

covariate x is attenuated by R=|β ̃| ⁄ |β|  due to measurement errors in covariate x (Cochran & 

Rubin, 1973). The estimation bias reduction rate (Cochran & Rubin, 1973) is computed as 100 

(1- treatment effect estimation bias after matching / treatment effect estimation bias before 

matching)%. 

Cochran (Rubin, 2006, p. 20) found that under a simple linear regression, the measurement 

error on x attenuates the bias reduction rate by a ratio of 1 ⁄ (1+h). h “is the  ratio of the variance 

of the errors of measurement to the variance of the correct measurements” (Cochran, 1968b, 

p. 295). In other words, 1 ⁄ (1+h) can be rewritten as 1 ⁄ r, with r representing the reliability. 

Measurement-error-adjusted Propensity Scores

When the true covariates (X*) are measured by X with errors, matching needs to be based 

upon the propensity scores Pr(D=1|X*) rather than Pr(D=1|X). There are two ways (Carroll et 

al., 2006) to adjust for measurement errors in the logit model used to estimate propensity 

scores. 

The first method assumes that the true covariates have not been observed and the naïve 

parameter estimates are obtained using the observed covariates. An approximately 

consistent estimator of the parameters is provided through a functional adjustment on the 

naïve estimator (for details, see Rosner, Spiegelman & Willett,1990; Rosner, Willett & 

Spiegelman, 1989). The second method of adjusting for measurement errors in logistic 

regression is through structural modeling, in which the distribution of the true covariates is 

parametrically modeled (Sörbom, 1978; Jakubowski, 2015). For example, the maximum 

likelihood or Bayesian-approach-based SEM (Carroll et al., 2006; Lee, 2007, Chapter 9) can 

be used to deal with measurement errors. 

This two-step adjusted method requires that X and X* have equal dimensions; however, the 

measurement-error-adjusted propensity scores cannot be obtained directly using this 

approach because the integral in the subsequent propensity score function does not have a 

closed-form solution (Carrel et al., 2006, p. 91). The approximate approach has been 

developed in Weller, Milton, Eison and Spiegelman (2007) using a multivariate normal 

conditional distribution of (X*│X,H), H represents the covariates without measurement errors.   

Such or similar adjustment has been used in propensity analyses (e.g., Battistin and 

Chesher 2014; MaCaffrey et al., 2011). For example, best linear unbiased predictor (BLUP) 

corrects measurement error to estimate propensity score using another error-free covariate 

(MaCaffrey et al., 2011). However, when the second sample having both X and X* observed is 

not available, one cannot estimate the measurement-error-adjusted propensity scores. In 

this situation, an alternative method such as SEM can be used to estimate the measurement-

error-adjusted propensity scores for matching.

Theoretical Framework
Structural equation modeling (Bollen, 1989; Jöreskog & Sörbom, 1996) uses the latent 

variable to account for measurement errors on manifest variables. Using a two-level SEM 

(Muthén, 1994), this study manipulates the reliability of the manifest variables to compare 

latent variable matching with matching through manifest variables. 
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Structural Equation Modeling as an Alternative 

An SEM-based propensity score framework incorporates the latent variable to adjust 

measurement errors on manifest variables. Propensity scores can be estimated through the 

following hybrid SEM model: 

The first equation, a measurement model, captures the linear relationship between the 

latent X* and observed X in both the treatment (D = 1) and control (D = 0) group. The second 

equation, a structural model, which is equivalent to the latent variable propensity score model 

in Equation (2) of Jakubowski (2015, p. 1291). It captures the nonlinear relationship between 

the latent X* and a latent propensity score Pr(D=1|X*).

Adapting a latent variable approach circumvents the post-hoc coefficient adjustment (e.g., 

Weller et al., 2007) discussed above. The SEM-based propensity scores can be used in 

matching (Jakubowski, 2015). Note that the latent propensity score Pr(D=1|X*) and latent X* 

have a one-to-one functional relationship in the unidimensional case. Matching on estimated 
2propensity scores is mathematically equivalent to matching on the estimated factor scores  of 

the latent X*.

Factor scores of the latent X* such as academic proficiency measures and ability constructs 

have been used to match individuals in order to achieve comparable groups (e.g., classical 

true score in Van der Linden & Hambleton, 1997). The latent construct is measured by multiple 

manifest items. In the most commonly used item response theory, individual ability is 

calibrated through a set of test-items with presumptive difficulty and discrimination (Lord & 

Novick, 1968). The calibrated ability estimation represents an examinee's academic 

propensity that the set of test-items are designed to measure. However, only matching on 

latent variables may fail to remove bias due to other omitted covariates H that are free of 

measurement error. A composite measure such as propensity score that summarizes both the 

latent X* and covariates H becomes necessary in matching. Wang, Maier and Houang (2017) 

simulated multi-level data and examined how omitted covariates attenuate the bias reduction 

rate in the SEM-based propensity score matching.  However, the issue of measurement error 

was not taken into accounted in Wang et al.(see pp. 72-73, 2017).  Using the same multi-level 

SEM-based simulation (Wang, 2015; Wang et al., 2017) and measurement-error-adjusted 

propensity score model of Equation (1), this study compares latent variable matching and 

matching through manifest variables to examine the effect of measurement error. 

Simulation Study
Longitudinal Design vs. Synthetic Cohort Design  

Simulated quasi-experimental synthetic cohort design (SCD, Wiley & Wolfe,1992) data with 

measurement errors are generated based on the Second International Mathematic Study 

(SIMS, International Association for the Evaluation of Educational Achievement, 1977). SIMS 

used a longitudinal design to study the effects of curriculum and classroom instruction 

targeted at the 8th grade (Cohort 2). Two waves of mathematic achievement data were 

collected, at the beginning (Time 0) and end of the school year (Time 1), respectively. Cohort 2 

at Time 0 was in the control condition. After the “treatment" of one year of schooling, Cohort 2 

at Time 1 data were collected to assess the schooling effect (δ ), defined as the average C2T1-C1T0

of “changes in mathematics achievement over the time-span of one school year at the 

particular grade level"  (Wiley & Wolfe, 1992, p. 299).

In practice, Cohort 2 at Time 0 data may not be collected in a study, an alternative cohort 

Cohort 1 at Time 1 (e.g., grade 7 at Yeari) can serve as the “control” group to estimate 

schooling effect, denoted now as . This design is called the synthetic cohort design   C2T1-C1T1

(SCD; Wiley & Wolfe, 1992), which has been widely used in aging and epidemiological studies 

(e.g., Heimberg, Stein, Hiripi, & Kessler, 2000; Kessler, Stein, & Berglund, 1998).  Using the 

synthetic cohort design (SCD), which was used for cross-national comparisons of schooling 

(Wiley & Wolfe,1992) in the Third International Mathematics and Science Study 1995 (TIMSS 

1995). In this design, the schooling effect is determined by comparing data of two adjacent 

grades: 7th (Cohort 1) and 8th grade (Cohort 2, the focal cohort). The two cohorts are 
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measured at the same time point (Time 1). The SCD by nature is a quasi-longitudinal design, 

where Cohort 1 at Time 1 data are treated as the “replacement” of Cohort 2 at Time 0 data to 

estimate schooling effect (   ). The schooling effect estimation bias in SCD is C2T1-C1T1

In order to create a quasi-experimental SCD, it is necessary to generate Cohort 1 at Time 1 

(7th grade in year i+1) data that are not comparable with Cohort 2 at Time 0 (8th grade in year 

i) due to measurement errors, so that matching can be used to reduce the simulated selection 

bias and to decrease the estimation bias of the schooling effect. 

The simulation design model is based on data collected in the United States (SIMS-USA, 

Wolfe,1987), one of the seven countries that collected longitudinal data in SIMS. The final 

data set includes 126 regular classes and 2,296 students. The average class size is about 27. 

Tables 1 and 2 list the descriptive statistics of the outcome variables, covariates, and manifest 

variables. The model selection of variables is based on the previous studies (Schmidt & 

Burstein, 1992). 

Table 1. Level-1 Descriptive Statistics of the Final Two-level Structural Equation Model

a bNote : 1 = not at all like, 2 = somehow unlike, 3 = unsure, 4 = somehow like, 5 = exactly like. 1 = little 
cschooling, 2 = primary school, 3 = secondary school, 4 = college or university or tertiary education.  1 

=unskilled worker, 2 = semi- unskilled worker, 3 = skilled worker lower, 4 = skilled worker higher, 5 = clerk 

sales and related lower, 6 = clerk sales and related higher, 7 = professional and managerial lower, 8 = 
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Variables Label Description

Educational

Inspiration

(EDUINSP)

 

YPWANT I want to learn more math (inverse code, 1–5
a
)

YPWWELL Parents want me to do well (1–5
a
)

YPENC

 

Parents encourage

 

me to do well

 

in math ( inverse code,1–5 )

Self-

 

encouragement

(SLFENCRG)

 YIWANT

 

aI want to do well in math (1-5 )

 

YMORMTH

  

YNOMOR Will take no more math if possible (inverse code, 1–5
a
)

Family

 

Support

 

(FMLSUPRT)

 

YPINT

 

Parents are interested in helping math (inverse code,1–5
a
)

YFLIKES

 

Father enjoys doing math (inverse code,1–5
a
)

 

YMLIKES

 

Mother enjoys doing math (inverse code,1–5
a
)

 

YFABLE

 

Father  is able to do math home work (inverse code,1–5a)

YMABLE
 

Mother is able to do math home work (inverse code,1–5a)

Math 

Importance
 

(MTHIMPT)

 

YMIMPT Mother thinks math  is important (1–5
a
)  

YFIMPT
 Father thinks math

 
is important (1–5

a
)

 

Socioeconomic

 

Status

 

(SES)

 

YFEDUC

 

Father’s education level (1–4b)

 YMEDUC

 

Mother’s education level (1–4b)

 

YFOCCN

 

Father’s occupation national code (1–8c)

 

YMOCCN

 

Mother’s occupation national code (1–8
c
)

 

Age

 

XAGE

 

Grand mean-centeredage

 

Parental Help

 

YFAMILY

 

How frequently family help (1–3d)

 

Education

Expectation

EDUECPT YMOREED: Years of education parents expected (1–4
e
)

Homework YMHWKT Typical hours of math home work per week

aLooking forward to taking more math (1-5 )

a
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edprofessional and managerial higher. 1 = never/hardly, 2 = occasionally, 3 = regularly.  1 = up to 2 years, 2 

= 2 to 5years, 3 = 5 to 8 years, 4 = more than 8 years. N = 2,296. 

Table 2. Level-2 Descriptive Statistics of the Final Two-level Structural Equation Model

Note. N = 126. 

Simulated Two-level Structural Equation Model

The proposed two-level SEM (Muthén, 1994) is shown in Figure 1. In the level-1 equation, 

the post-test score is predicted by the pre-test score, which is predicted by four student 

characteristics and five latent variables. The latent constructs and their manifest variables are 

listed in Table 1. In the level-2 model, the intercept of pre-test (β ) is predicted by four class-0

/school-level variables. The intercept of the post-test (α ) is predicted by β  and three class-0 0

level variables. The level-1 and level-2 residuals are mutually independent of one another. 

Figure 1. Two-level structural equation model
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Variables Label Description Mean

Teacher/Class - level covariates

 

Class Size

 

CLASSIZE

 

Created from the  number  of   students   in class

 

26.60

 

Opportunity

 

to Learn
 

OLD ARITH

 
Prior OTL in Arithmetic

 
7.10

 

OLDGEOM
 

Prior OTL in Geometry
 

3.19
 

NE WALG This  year’s  OTL   in   Algebra 59.61  

NEWGEOM This  year’s  OTL   in   Geometry 41.37  

Instruction
 

TPPWEEK
 

Number of hours of  math instruction
 

  per week
 

5.09
 

School - level covariates

 
Qualified

Math Teacher

Rate

MTHONLY

 

Proportion of qualified match teachers: Sum 

of SSPECM and SSPECF divided by STCHS

 

0.14
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Level-1 Model:

Level-2 Model:

Mplus (Muthén & Muthén, 1998-2015) is used to estimate factor loadings, regression 

coefficients, and residual variances (see Appendix). These model-based estimates are 

treated as known parameter values to generate longitudinal data of Cohort 2 at Time 0 and 

Time 1. The population level SES variables are manipulated using Equation (6) in the 

simulation descriptions below. Our data-driven approach borrows the “sampling study” metric 

from MacCallum, Roznowski and Necowitz (1992), who treated the observed data as the 

“population”, from which random samples were drawn for simulation. Our approach differs 

from theirs in that we created a hypothetical population from which to draw data for simulation. 

The SIMS-USA data are collected to represent 3,681,939 8th graders nested in 136,368 

classes across the seven strata in the United States (Wolfe, 1987). The simulated pseudo-

population includes 12,600 classes and 345,000 students with an average class-size of 

27.13.

Table 3. Four Simulations of Matching on Latent and Manifest Variables

Note: ICC: Intraclass Correlation, which varied from 0.023 to .322 in the most commonly 

used large-scale surveys on hieratically structured data (Hedges & Hedberg, 2007).

Due to its practical importance in education studies, only latent variable SES and its four 

manifest variables are manipulated to simulate selection bias. In this study, selection bias is 

indicated by the non-comparability between Cohort 2 at Time 0 (the treatment group) and 
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SE
S

X
m

 

SE
S

X
m

 

SE
S

h

 

SE
S

h

 

S
im

u
la

tio
n

 

Cohort 2 Time 0

 

(8 th
Grade in Year i)

 

Cohort 1 Time 1

 

(7 th
Grade in Year i+1 )

 

	
 

L
a
te

n
t

 
R

e
lia

b
ility

 

ICC

 

 
L
a
te

n
t

 

R
e
lia

b
ility

 

ICC

 

P
re

 
P

o
st

 

P
re

 

P
o
st

 

One

 

µ

 

0

 

Low

 

.32

 

.34

 

µ+c1

 

0

 

Low

 

.31

 

.33

 

Two

 

µ

 

0

 

Low

 

.32

 

.34

 

µ

 

0

 

High

 

.31

 

.33

 

Three

 

µ

 

0

 

Low

 

.32

 

.34

 

µ+c2

 

.68

 

High

 

.31

 

.33

 

Four µ 0 High .32 .34 µ+c2 .68 High .31 .33

(3)

(4)

(5)

and

with and
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Cohort 1 at Time 1 (the control).

Generated Treatment Group Cohort 2 at Time 0 Data

The manifest variables of the latent variable SES are generated through a multivariate 

normal distribution. The latent variable SES     is associated with 4 manifest variable    

..........through the measurement model 

with                                 and                                        includes Father’s /  Mother’s 

education level (YFEDUC / YMEDUC), and Father’s / Mother’s occupation national code 

(YFOCCN / YMOCCN). They are generated through a multivariate normal distribution

The four means are denoted as                                           . The variance matrix                        

....      is computed by                          . The parameter values of                and        are 

available in the Appendix. The computed variances of          are 0.475, 0.405, 4.421, and 

3.916. The reliability coefficient (Lord & Novick, 1968; Raykov, 1997) was computed as 0.25 in 

Cohort 2 at Time 0.

Generated Control Group Cohort 1 at Time 1 Data

Data generation of Cohort 1 at Time 1 involves manipulating random measurement errors 

and reliability values to simulate selection bias. The four manipulations are summarized in 

Table 3. Each manipulation represents one source of simulated selection bias, which causes 

non-comparability between Cohort 2 at Time 0 data and Cohort 1 at Time 1 data. 

Simulation 1: C1T1’s manifest variable means differ from C2T0’s, with the same latent means and 

low reliability.

In this simulated Cohort 1 at Time 1, the four manifest variables of latent variable SES are 

generated through a multivariate normal distribution                      , with                        Adding    

c  indicates that each manifest variable mean of Cohort 1 at Time 1 is 0.5 standard deviations 1
C2T0larger than that of Cohort 2 at Time 0. The four means are denoted as µ  = [3.720, 3.667, 5.328, 

5.117]. The computed reliability coefficient for Cohort 1 at Time 1 is equal to 0.25, which is as 

low as that in Cohort 2 at Time 0. This low reliability has not been      examined in the simulated 

propensity score analysis involved measurement error (reliability of .92 in MaCaffrey et al., 

2011; reliability from .5 - .9 in Steiner et al., 2011 and Rodriguez de Gil et al., 2015; reliability of 

.5, .7, .9 and .999 in Webb-Vargas et al., 2015). 

Simulation 2: C1T1’s manifest variables have higher reliability than C2T0’s, with the same 

manifest means and the same latent means.

In the second simulation, the manifest variables of Cohort 1 at Time 1 are generated through 

a multivariate normal distribution                            . The residual variances of the four 

manifest variables are reduced by 90%. In turn, the computed reliability coefficient is 

increased to 0.78. A larger reliability coefficient indicates a stronger relationship between the 

four manifest variables and the latent variable         in Cohort 1 at Time 1. This larger reliability 

is similar to a value that has been studied in Steiner et al., (2011), Rodriguez de Gil, et al. 

(2015) and Webb-Vargas et. al (2015). 

Simulation 3: C1T1’s manifest variables have higher reliability, with a different latent variable 

mean from C2T0’s.

In the third simulation, the manifest variables of Cohort 1 at Time 1 have a higher reliability of 

0.78; the manifest variables of Cohort 2 at Time 0 have a reliability of 0.25. In addition, the 

latent variable         means in Cohort 1 at Time 1 is 0.68, which is half of the standard deviation 

of the latent variable       in Cohort 2 at Time 0. Because of the latent mean difference, the 

manifest variable means of two cohorts differ by a constant vector c . That is,                   based 2

on Equation (6) above. In Simulation 1 or 2, the latent variable        mean of Cohort 1 at Time 1 

is equal to 0 (see Table 4’s Simulation One and Two).

Simulation 4: C1T1’s latent variable mean differs from C2T0’s, with the same high reliability.

In the fourth simulation, both Cohort 1 at Time 1 and Cohort 2 at Time 0 have a reliability of 

0.78. This is achieved by using the manipulation discussed in Simulation 2. The mean of         

in Cohort 1 at Time 1 is manipulated in the same way as that discussed in Simulation 3. 

Four Types of Matching
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The R (R Development Core Team, 2007) module–MatchIt (Ho, Imai, King & Stuart, 

2011)–carries out the four types of matching for each manipulation. The first matching, 

Propensity Score Matching Based on Manifest Variables (PSMMV), uses “naïve” propensity 

scores estimated through manifest variables. The second, Propensity Score Matching Based 

on Latent Variable (PSMLV), uses “true” propensity scores estimated from the latent variable. 

The third, Matching on Factor Score (MFS), treats estimated factor scores as propensity-

score-like measures to reduce bias. The factor score is estimated through Mplus (Muthén & 

Muthén, 1998-2015). The last matching, Mahalanobis Distance Matching Based on Factor 

Score (MDMFS), uses the Mahalanobis distance of the estimated factor scores. If a unit can 

be re-used in matching, it is called matching with replacement (Austin, 2014). Using simulated 

multilevel data, Wang et al. (2017) only conducted matching without replacement and 

suggested that future study should examine matching with replacement. In our study, each of 

the four types of matching is conducted with and without replacement. Implementing the 

same settings in Wang (2015) and Wang et al. (2017), we set up the caliber (Stuart & Rubin, 

2008) at 0.2 and 0.01. The simulation design is 4 (simulations) × 4 (types of matching) × 2 

(with/out replacement) × 2 (calipers), which determined the structure of Table 4. Each 

condition is simulated with 1,000 replications. Each replication randomly draws 100 treatment 

classes and 100 controls, with an average class size of 27. The sample size of each 

replication on average is 5,400. 

Simulation Evaluation 

The estimation bias reduction rate (Cochran & Rubin, 1973; Stuart & Rubin, 2008) is 

computed as:                                                                         . A larger value bias reduction rate 

indicates a better performance of matching. For each of the 1,000 replications, there are four 

matching methods. In a replication, if the initial bias of the two cohorts is less than 0.5 standard 

deviations of the 1,000 initial biases, then the two cohorts are comparable and that 

replication’s matching results will not be used to compute the bias reduction rate. Table 4 

summarizes the results of the four manipulation studies.

Table 4. Matching Results of Simulation Design: Four (Simulations) Four (Types of Matching) Two 

(with/out Replacement) Two (Calipers)

Note: c  represents that each manifest variable mean of Cohort 1 at Time 1 is 0.5 standard deviations 1

larger than that of Cohort 2 at Time 0; c  represents that the latent variable mean in Cohort 1 at Time 1 is 2

increased by a half of the standard deviation of the latent variable η  in Cohort 2 at Time 0. PSMMV: SES

propensity score matching based on manifest variables; PSMLV: propensity score Matching based on 
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latent variable; MFS: matching on factor score; MDMFS: Mahalanobis distance matching based on 

factor score.

Results
Simulation 1

In simulation 1, C1T1’s manifest variable means differ from C2T0’s, with the same latent 

means (0) and low reliability (.25). 

Propensity Score Matching Based on Manifest Variables (PSMMV)

Matching on propensity scores estimated from the four manifest variables through a larger 

caliper (0.2) without replacement reduces the schooling effect estimation bias in SCD 

(shortened as “estimation bias”) by 60.77%, and with replacement by 58.66%. Matching on a 

smaller caliper (0.01) without replacement reduces estimation bias by 56.59%, and with 

replacement by 54.68%. 

Propensity Score Matching Based on Latent Variable (PSMLV) 

Matching on propensity scores estimated from factor scores through a larger caliper without 

replacement reduces estimation bias by 2.83%; however, matching with replacement through 

a larger caliper increases estimation bias by 4.59%. Matching through a smaller caliper 

without replacement increases estimation bias by 3.38%, and with replacement by 2.64%. 

Matching on Factor Score (MFS)

When the estimated factor score is used as a propensity-score-like measure to match 

through a larger caliper without replacement, it reduces estimation bias by 2.15%, but with 

replacement increases estimation bias by 4.59%. Matching on a smaller caliper without 

replacement increases estimation bias by 2.31%, and with replacement by 2.64%. 

Mahalanobis Distance Matching Based on Factor Score (MDMFS) 

If the estimated Mahalanobis distance of the estimated factor score is used for matching on 

a larger caliper without replacement, it reduces estimation bias by 0.60%, but with 

replacement increases estimation bias by 9.30%. Matching on a smaller caliper without 

replacement increases estimation bias by 4.34%, and with replacement by 19.5%.

In summary, when the latent variable could not represent the manifest variables well (i.e., 

low reliability), matching based on manifest variable was optimal. Using larger caliper 

reduced more bias than using smaller caliper. Given the same caliper, matching without 

replacement reduced more bias than matching with replacement. 

Simulation 2

In simulation 2, C1T1’s manifest variables have higher reliability (0.78) than C0T2’s (0.25), 

with the same manifest means and the same latent means. 

Propensity Score Matching Based on Manifest Variables 

Matching on propensity scores estimated from the four manifest variables through a larger 

caliper without replacement increases estimation bias by 4.68%, but with replacement 

reduces estimation bias by 5.74%. Matching through a smaller caliper without replacement 

reduces estimation bias by 2.62%, but with replacement increases estimation bias by 4.85%. 

Propensity Score Matching Based on Latent Variable 

Matching on propensity scores estimated from factor scores through a larger caliper without 

replacement reduces estimation bias by 0.15%, but with replacement increases estimation 

bias by 2.14%. Matching through a smaller caliper without replacement reduces estimation 

bias by 8.35%, but with replacement increases estimation bias by 6.50%. 

Matching on Factor Score 

Matching on factor scores through a larger caliper without replacement reduces estimation 

bias by 0.59%, and with replacement by 3.26%. Matching through a smaller caliper without 

replacement reduces estimation bias by 9.26%, but with replacement increases estimation 

bias by 6.50%. 

Mahalanobis Distance Matching Based on Factor Score 

Mahalanobis distance matching based on estimated factor scores through a larger caliper 

without replacement reduces estimation bias by 2.04%, but with replacement increases 

estimation bias by 4.85%. Matching through a smaller caliper without replacement reduces 
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estimation bias by 5.40%, but with replacement increases estimation bias by 16.05%.

In summary, when there was no difference between the two groups, matching based on 

manifest or latent variable was not necessary because little bias was reduced. 

Simulation 3  

Simulation 3 C1T1’s manifest variables have higher reliability (0.78), and a different latent 

variable mean (0.68) from C2T0’s (0). 

Propensity Score Matching Based on Manifest Variables 

Matching on propensity scores estimated from the four manifest variables through a larger 

caliper without replacement reduces estimation bias by 50.37%, and with replacement by 

54.47%. Matching through a smaller caliper without replacement reduces estimation bias by 

52.65%, and with replacement by 58.53%. 

Propensity Score Matching Based on Latent Variable 

Matching on propensity scores estimated from factor scores through a larger caliper without 

replacement reduces estimation bias by 49.46%, and with replacement 47.43%. Matching 

through a smaller caliper without replacement reduces estimation bias by 50.22%, and with 

replacement by 56.38%. 

Matching on Factor Score 

Matching on factor scores through a larger caliper without replacement reduces estimation 

bias by 46.70%, and with replacement by 47.43%. Matching through a smaller caliper without 

replacement reduces estimation bias by 49.06%, and with replacement by 56.38%. 

Mahalanobis Distance Matching Based on Factor Score 

Mahalanobis distance matching based on estimated factor scores through a larger caliper 

without replacement reduces estimation bias by 4.70%, and with replacement by 48.87%. 

Matching through a smaller caliper without replacement reduces estimation bias by 13.98%, 

and with replacement 52.68%. 

In summary, when the latent variable represented the manifest variables well in the 

treatment group (i.e., high reliability), matching based on manifest and latent variable were 

equally optimal. Contrasted with Simulation 1’s results, using smaller caliper reduced more 

bias than using larger caliper. Matching with replacement and smaller caliper produced the 

best results. Given the same caliper, matching with replacement reduced more bias than 

matching without replacement. Mahalanobis matching without replacement was the least 

efficient among the four matching methods. Mahalanobis matching with replacement was 

comparatively optimal; and using smaller caliper reduced more bias than larger caliper.

Simulation 4 

In simulation 4 C1T1’s latent variable mean (0.68) differs from C2T0’s (0), with the same high 

reliability (0.78). 

Propensity Score Matching Based on Manifest Variables 

Matching on propensity scores estimated from the four manifest variables through a larger 

caliper without replacement reduces estimation bias by 55.93%, and with replacement by 

57.11%. Matching through a smaller caliper without replacement reduces estimation bias by 

54.93%, and with replacement by 61.95%. 

Propensity Score Matching Based on Latent Variable 

Matching on propensity scores estimated from factor scores through a larger caliper without 

replacement reduces estimation bias by 55.10%, and with replacement by 56.34%. Matching 

through a smaller caliper without replacement reduces estimation bias by 54.51%, and with 

replacement by 61.56%. 

Matching on Factor Score 

Matching on factor scores through a larger caliper without replacement reduces estimation 

bias by 56.83%, and with replacement by 56.34%. Matching through a smaller caliper without 

replacement reduces estimation bias by 54.35%, and with replacement by 61.56%. 

Mahalanobis Distance Matching Based on Factor Score 

Mahalanobis distance matching based on estimated factor scores through a larger caliper 

without replacement reduces estimation bias by 3.43%, and with replacement by 52.22%. 

Matching through a smaller caliper without replacement reduces estimation bias by 13.74%, 
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and with replacement by 53.03%. 

In summary, when the latent variable represented the manifest variables well in both 

treatment and control groups, matching based on manifest and latent variable were equally 

optimal. Compared with Simulation 3’s results, using a more reliable control group (C2T0) in 

Simulation 4’s matching achieved the most optimal results. Matching with replacement and 

smaller caliper was the best choice. Matching with replacement outperformed matching 

without replacement. In matching without replacement, using larger caliper reduced more 

bias than using smaller caliper. For matching with replacement, using smaller caliper reduced 

more bias. Given the same caliper, matching with replacement reduced more bias than 

matching without replacement. Mahalanobis matching was the least efficient among the four 

matching methods. And, it was optimal only when matching with replacement was used; and 

using smaller caliper reduced more bias than larger caliper. 

Discussion and Conclusion
Matching on Factor Score Works Sufficiently and Better with Higher Reliability 

Measurement error has a negative effect on bias reduction through a latent variable 

matching framework. If a latent variable, rather than measurement error, mainly accounts for 

the variation among manifest variables, then matching through the latent variable itself will be 

equivalent to matching through the propensity score that was computed from the latent 

variable. This result supports the previous practice of using latent ability or academic 

proficiency estimates to match treatment and control cohort participants (e.g.,Van der Linden 

& Hambleton, 1997). Latent variable matching will achieve a better bias reduction result if the 

treatment and control cohorts both have high reliability measures than if either the treatment 

or control group has a high reliability measure. In cases that involve multi-manifest variables, 

latent variable matching will be preferable because it is more efficient than matching on 

respective manifest variables.  It is worth noting that latent variable matching approaches are 

effective if the two cohorts' factor score means are different. If, however, the two cohorts are 

comparable in terms of the latent variable means, then matching through the latent variable is 

not necessary.

Matching Based on Manifest Variables with Measurement Error Is Sufficient

In practice, studies often use different quality and types of data in terms of measurement 

reliability, which requires different matching options and leads to inconsistent results. 

Measurement error has a case-by-case effect on propensity matching and does not 

necessarily attenuate the causal effect (Battistin & Chesher, 2014). Naïve propensity score 

can work as well as other error-corrected propensity score methods (MaCaffrey et al., 2011). 

Webb-Vargas et al. (2015) also found that using naïve covariate and imputation based 

method worked equally well in propensity score analysis on real data. Findings in Jakubowski 

(2015) were inconsistent. Matching based on manifest variable can work slightly worse (Table 

3 Model B and C, p. 1302) than matching based on latent variable. However, matching based 

on manifest variable can work slightly better when reliability is the lowest due to measurement 

error variance and lack of common support (Table 3 Model D, p. 1302).  Using manifest 

variable with measurement error for propensity score analysis can show advantage of bias 

reduction on treatment effect estimation, specifically when the latent composite variable is 

under-representative in observational studies. This study is focused on the bias reduction on 

the covariate rather than the treatment effect estimation. We found that manifest variable 

based propensity score matching works comparably to latent variable based propensity score 

matching. 

Measurement Complexity and Mixed Matching Effects Request More Latent Variable 

Based Research on the Topic

This study demonstrates a complicated picture of matching through manifest variables 

and/or a latent variable because selection bias may be due to the intercept, latent variable and 

measurement error as shown in Equation (6). Simulation One indicates that matching on 

manifest variables out-performs matching on the latent variable. That is, if the two cohorts are 

different only on poorly measured manifest variables with considerable error, then latent 

variable matching works inefficiently to balance the manifest variables; however propensity 

score matching through these manifest variables is still optimal. In this situation, selection 

bias on covariate is NOT due to the latent variable, but measurement error. Then latent 
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variable based propensity score matching is not sufficient to reduce selection bias on 

covariate. However, manifest variable based propensity score matching will work, because 

manifest variable contains an extra latent variable, i.e., measurement error.  In practice, if the 

treatment and control groups are hypothesized to have the same distribution of latent ability, 

matching on propensity score estimated though manifest variables (e.g., observed 

performance measures) should be practical and optimal. 

If the two cohorts differ in terms of the latent variable as shown in Simulation Three and Four, 

then matching on factor scores or propensity scores that have been estimated using the latent 

variable works as well as matching on propensity scores that have been estimated from 

manifest variables. In this situation, because the manifest variable is a linear function of the 

latent variable and measurement error, increasing reliability will improve the performance of 

both latent variable matching and manifest variable matching. This implies that, if the latent 

score does exist, it can be directly used for matching, and there is no need to estimate 

propensity score through multiple manifest variables that possibly have measurement error. 

Simulation Two’s bias reduction rates of all the proposed matching are small and close to 

zero. It simulates a situation where treatment and control groups are comparable. In this 

situation, matching is NOT necessary, because it will improve nothing on the comparability of 

treatment and control groups. 

Matching Options (Replacement and Caliper) Interact with Measurement Reliability

Matching options include whether matching allows replacement and whether a smaller 

caliper is used. Austin (2011) found that optimal bias reduction rates are obtained when the 

caliper is in a range from 0 to 0.4 (p. 153). Lunt (2014) recommended to use a tighter caliper 

because bias reduction performance is worsened when the caliper becomes larger. Austin 

(2014) simulated non-hierarchical data found that matching with replacement performed as 

well as caliper matching without replacement. Wang et al. (2017) found that caliper matching 

interacts with data structure. They recommended that “different sizes of caliper should be 

used for level-1 [i.e., student-level] and level-2 [i.e., class-level] matching (p. 67) ”. Our 

student-level matching results showed an interaction between matching options and data 

quality (i.e., measurement reliability). When measures for the two cohorts have equally low 

reliability, either using a larger caliper or matching without replacement will reduce more bias; 

matching without replacement on a larger caliper is optimal. However, the trend is reversed 

when the two cohorts have equally high reliability. That is, either using a smaller caliper or 

matching with replacement improves matching performance; and matching with replacement 

on a smaller caliper performs the best. 

Mahalanobis Distance Matching Is Comparatively Nonsufficient

Previous studies have found that post-hoc matching depends on the summary measure 

that is a functional composite of covariates (Rubin, 1985). The most commonly used 

composites are the Mahalanobis distance (e.g., Rubin, 1980) and the propensity score 

(Rosenbaum & Rubin, 1983). Mahalanobis distance matching is less effective than 

propensity matching on multilevel data (Wang, 2015). Similarly, this study found that 

Mahalanobis distance matching reduces bias less effectively than either propensity score 

matching or factor score matching. Mahalobis matching with replacement was comparatively 

optimal only when the treatment group data are highly reliably. Propensity score matching 

generally performs better than Mahalanobis distance matching when the true propensity 

score model is known and the sample size is large (Sekhon& Diamond, 2008). The simulation 

settings of this study favor propensity score matching. Each simulated condition determines a 

“true” and known propensity score model. Each of the 1000 replications uses 100 classes, 

and the sample size is approximately as large as 5,400.

Needs to Examine Both Level-1 and Level-2 Data With Measurement Errors

In educational studies, researchers often sample larger units from a hierarchically 

structured population (Cochran, 1963; Scott & Smith, 1969). Due to the hierarchical structure 

of the experimental design and data collection (Raudenbush & Sadoff, 2008), treatment units 

are generally classes or schools rather than individual students (Hedges, 2007). When 

clusters are assigned to interventions, non-comparable treatment-control groups can arise 

from either level-1 or level-2 covariates (Raab & Butcher, 2001), resulting in selection bias. 

This study focuses on manifest variables and the latent variable only at level-1, although the 

simulated model is based on a two-level latent variable framework. Future research should 
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explore how level-2 measurement errors will affect the accuracy of matching in terms of the 

bias reduction rate when level-2 matching and dual matching (Wang, 2015) are needed. 
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Footnotes

1Selection bias, also called “sample selection bias” (Heckman, 1979), refers to the bias that 

is due to the use of non-random samples in estimating relationships among variables of 

interests. It can occur in two situations: 1) self-selection by objects being studied, and 2) 

sample selection by researchers or data analysts. Using selection-biased samples results in 

a biased estimate of the effect of an intervention that should have been randomly assigned. 

The intervention can refer to “treatment of migration, manpower training, or unionism” 

(Heckman, 1979, p. 154).
2 The estimated factor scores can be derived using SEM software packages such as Mplus 

(Muthén & Muthén, 1998-2015).
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