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Introduction
Postoperative or post-treatment survival is greater among breast cancer patients than 

among those with other types of cancer. However, recurrence and metastasis to the bones, 
1lungs, and brain are possible after a latent period of 5–10 years.  Various reports suggested 

that the cancer stem-like cells (CSC) are found in breast cancer and are considered to deter 
2–5the prognosis of events including tumor recurrence and metastasis.  Tumors are speculated 

to comprise a heterogeneous cell population constituted by CSC, transit-amplifying (TA) cells, 
6,7and terminally differentiated cells.  CSC can undergo self-renewal, symmetric cell division, 

and can yield terminally differentiated cells and somatic stem cells via asymmetric cell 
.8,9division  In this heterogeneous cell population, CSC, a small cell population, occupies the 

highest position in tumor hierarchy. With slow cell cycles and high anti-oxidative capacity 

compared with non-CSC, CSC are resistant to conventional chemo- and radiotherapy 
10–12targeting proliferating cancer cells.  Despite large cancer cell populations being eliminated 

through chemotherapy, only a few CSC may survive and cause tumor recurrence and 

metastasis. Hence, it is essential to elucidate the characteristics of CSC and standardize 

methods of assessing CSC-enriched populations and associated culture methods. Flow 

cytometry analysis using known CSC-specific antibodies is a popular and simple method for 
13–15assessing CSC.  The CSC population can be enriched and fractionated through flow 

cytometry analysis because cell membrane characteristics of CSC is analyzed in only living 

cells. In standardizing culture methods for CSC, tumor sphere culture and organoid culture 
16,17are useful tools to assess the self-renewal capacity of CSC in vitro.  Sphere culture has 

18been used to assess the survival and self-renewal capacity of neural stem cells in culture.  

Abstract

Since cancer stem-like cells (CSC) was identified in acute myeloid leukemia (AML) in 1997, 

the involvement of CSC has been reported in various cancers including glioma, breast 

cancer, lung cancer, intestine cancer, skin cancer, etc. Cancer cells are speculated to 

originate from the small CSC population; CSC also display chemotherapeutic resistance 

and radio-resistance. Hence, control of the CSC population may lead to the development of 

therapeutic strategies for inhibiting tumor growth, recurrence, or metastasis. To study CSC 

and their population dynamics, the flow cytometry analysis, tumor sphere culture and 

organoid culture would lead to the development of effective tools. Based on in vitro 

methods, characteristic signaling pathways in CSC were reported using these techniques, 

e.g., Wnt, Notch, and Hedgehog pathways. Furthermore, in silico analysis has revealed that 

key growth factors expressed via activation of nuclear factor κB (NF-κB) plays a role in CSC 

self-renewal. This review summarizes how CSC are distinguished from non-CSC and how 

CSC retain their self-renewal capacity through signaling or growth factors in an autocrine 

or paracrine manner in breast cancer.
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CSC-derived tumor spheres are obtained through floating cell cultures in sphere culture 

medium (SCM) containing neural stem cells and a cocktail of growth factors, including 

epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and hormones. Because 

CSC are resistant to loss of anchorage dependence (anoikis), only CSC can grow under the 
19,20  serum-free and non-adherent conditions. Hence, tumor sphere forming ability correlates 

with self-renewal capacity of CSC in vitro. On the other hand, organoid culture, that is three 

dimensional (3D) culture system, has been used as the study of cellular differentiation and 
21–23 morphogenesis from stem and progenitor cells containing with gut or mammary gland.

Organoids are expanded in collagen gel or matrigel that based on growth medium containing 

EGF, TGFβ-antagonist Noggin and the Wnt-agonist R-spondin1 as growth stimuli, and ROCK 
24inhibitor Y-27632 to avoid anoikis.  In CSC study, organoid culture also is a helpful method for 

assessing the maintenance of tumor formation because tumors are able to be reconstructed 
25,26from a small number of tumor cells in vitro.  Moreover, organoid culture is able to be applied 

27to drug screening due to obtaining many clonal organoids.  Accordingly, organoid culture will 

be hopefully lead to not only assess the CSC capacity but also develop anti-CSC agents.

Controlling the CSC activity would influence the inhibition of tumor growth, recurrence, or 

metastasis. To establish the strategy to target CSC, it is important to identify the signaling 

pathways activated in CSC by using the flow cytometry and the CSC culture system. Recently, 

it continues to become clear that several potentials signaling pathways are activated in CSC. 

This review discusses signaling pathways in breast CSC and the possibilities for development 

of novel strategies for targeting breast CSC.

The Characteristic of CSC in Breast Cancer
28Breast CSC were first reported in 2003 by Al-Hajj et al..  They reported enrichment of breast 

high low/- -CSC in a CD44 /CD24 /Lineage  cell population (so-called CSC population) derived from 

clinical samples subjected to flow cytometry, and this cell population had high tumor-initiating 

activity when inoculated into the mammary fat pads of immunodeficient mice. After that, by 

using staining of the cell surface antigen and the flow cytometry analysis in a similar way, 

specific markers expressed in cell surface of breast CSC were found. Epithelial cell adhesion 

molecule (EpCAM), CD10, β1 integrin (CD29), α6 integrin (CD49f), and CD133 may be used 
28–31as cell surface markers of breast CSC.

Figure 1. Mechanisms of self-renewal of breast CSC through activation of Wnt, Notch, and HH 

pathways. Hyperactivity of multiple signal pathways retains the characteristics and self-renewal ability of 

breast CSC. Several antagonists of signaling pathways inhibit breast CSC self-renewal. Abbreviations: 

LRP5/6, low-density lipoprotein receptor-related protein 5/6; FZD, Frizzled; TCF, T cell factor; LEF, 

Lymphoid enhancer-binding factor; JAG, Jagged; DLL, Delta-like; NICD, Notch intracellular domain; 

RBPJ, Recombining binding protein suppressor of hairless; SHH, Sonic hedgehog; PTCH, Patched; 
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SMO, Smoothened.

Breast CSC populations are maintained by molecules secreted from themselves (autocrine 

signaling) or their micro environment, i.e., the so-called CSC niche (paracrine signaling), e.g., 
32,33endothelial cells, immune cells, and cancer-associated fibroblasts (CAFs).  These 

molecules intricately interact and regulate breast CSC self-renewal in an autocrine/paracrine 

manner; it has been difficult to understand distinctive signal pathways in breast CSC. 

However, over the past several years, potential signaling pathways activated in breast CSC 

have been elucidated primarily through in silico analyses. These include common pathways 

between cancer and somatic stem cells; however, it has been speculated that CSC are caused 

by abnormal and hyperactivation of various signaling pathways. Hence, we shall focus on the 

aberrantly activated signaling pathways, including Wnt, Notch, and Hedgehog pathways, for 

self-renewal of breast CSC (Figure 1). Moreover, we revealed that signaling pathways 

induced by key growth factors neuregulin 1(NRG) and insulin-like growth factor 2 (IGF2) to 
34,35regulate self-renewal capacity of breast CSC.  Inhibition of those signaling pathways by 

reagents may probably help develop novel therapy for eradication of breast CSC.

Key Factors for Breast CSC Maintenance
Wnt pathway

The Wnt pathway regulates various functions of normal or tumor stem cells, through two 
36,37pathways: canonical and non-canonical pathways.  In the canonical pathway, binding of 

Wnt ligands to a dual receptor complex comprising the WNT co-receptors LRP5 or LRP6 and 

the Frizzled family (FZD1-10), a seven transmembrane domain receptor, initiates Wnt–beta-

catenin signaling. The non-canonical pathway includes the planar cell polarity (PCP) pathway 
2+and Ca  pathway, which does not involve beta-catenin. This review refers to the canonical 

Wnt pathway. The Wnt pathway is involved in mammary gland development and 
38,39carcinogenesis in mice or human.  For example, Axin2 is a direct target gene of the Wnt 

pathway though beta-catenin. A few of Axin2-positive stem cells generate basal and luminal 
40alveolar cells in adult virgin mice , while Wnt-induced Axin2 activates Snail-induced 

epithelial–mesenchymal transition (EMT), resulting in breast cancer cell invasion and 
41progression . In studies on CSC, the expression of phosphorylated beta-catenin was lower in 

the side population (SP), which is a flow cytometry method for detecting stem cells or CSC 
42based on the ability to efflux the fluorescent dyes, compared with the non-SP.  When the 

staining intensity of cytoplasmic and nuclear beta-catenin was measured, immunostaining 

intensity was higher in the SP than in the non-SP, and nuclear accumulation of beta-catenin 

was significant in the SP. Hence, the Wnt pathway may activate in CSC. In another group, 

overexpression of sFRP1 or DKK1, negative regulators of the Wnt pathway, or shRNA-

mediated knockdown of LRP6 reduced tumor sphere forming ability, tumor growth, and 
43metastasis in basal-like breast cancer.  However, overexpression of Twist in immortalized 

44human mesenchymal epithelial cells (HMLE) induced EMT and tumor sphere formation.  

Because Twist, an EMT-related transcription factor, upregulates Axin mRNA, a beta-

catenin/TCF-LEF target gene, and inhibition of tumor sphere formation through treatment with 

recombinant sFRP1 or DKK1; this indicated that EMT-induced pathway contains beta-

catenin-dependent Wnt pathway in autocrine signal and active migration and self-renewal of 

breast CSC. MicroRNAs (miRNAs) are important to understand the regulation of WNT 

signaling. Some miRNAs were reported to be regulators of CSC signaling. The high 

expression of miR-142 and miR-150 were observed in human breast CSC, and that miR-142 

directly targets APC mRNA and those inducing the suppression of tumor sphere forming 
25activity and tumor growth . Another study reported that Let-7c expression was inversely 

45correlated with estrogen receptor α (ERα) expression and Wnt activity.  Let-7c targets 3’UTR 

of ERα mRNA and inhibits breast CSC self-renewal though the APC/β-catenin/TCF pathway. 

Selectively targeting occurs through the Wnt pathway, e.g., PKF118-310 or CWP232228 as 

chemical antagonists of the Wnt pathway, inhibited breast CSC tumor sphere forming ability 
46,47and tumorigenesis in a murine model.  Those may be candidate therapeutic agents for 

breast CSC maintenance through Wnt pathway.

Notch Pathway

The Notch pathway plays an important role in the development of breast CSC and their 
48characteristics . In mammals, Notch receptors comprise 4 subtypes (Notch1–4), which are 

activated by binding with five ligands (DLL, delta-like 1, 3, and 4; JAG, jagged 1 and 2) from 
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signal sending cells, leading to the expression of basic helix-loop-helix (bHLH) transcription 
49factors containing HES family or HEY family.  It is known that the Notch pathway-related 

50genes of mammary development correlate with breast cancer cells.  Hence, the high 
51expression of Notch receptor correlates with poor prognosis of breast cancer patients.  In 

breast CSC, the Notch pathway induces hyperactivation of aldehyde dehydrogenase 1A1 

(ALDH1A1), a marker of stemness, through the induction of deacetylase sirtuin 2 (SIRT2), 
52which causes tumorigenesis and tumor growth.  Moreover, the Notch pathway in breast 

cancer promotes CSC self-renewal, which enhances glucose uptake and aggressive 
53hormone-independent tumor growth in vivo ; hence, the Notch pathway is associated with 

CSC characteristics in cancer metabolism. Recently, the Notch pathway-related proteins 

containing with gamma (γ)-secretase, enzyme complex related to Notch cleavage, and Notch 

receptors were reported to be remarkable therapeutic targets for CSC self-renewal. 

Treatment of MRK-003, a γ-secretase inhibitor and an antagonist of the Notch pathway, inhibit 
54tumor sphere forming ability and the differentiation of progenitor cells.  Mice administered 

MRK-003 displayed apoptosis and the differentiation in ERBB2 breast cancer mouse model. 

PF-03084014, other γ-secretase inhibitor, used in combination with docetaxel, an anti-cancer 
55reagent, reversed these effects and demonstrated early-stage synergistic apoptosis.  PF-

high + +03084014 used in combination with docetaxel reduces the ALDH  and CD133 /CD44  CSC 

populations and tumor progression in the xenograft model. Other groups reported that breast 

cancer cells treated with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl 

ester (DAPT), an inhibitor of the Notch pathway, decreased the CSC population and knock-

down of Notch1 or Notch4 suppressed tumor sphere forming efficiency and tumor 
56progression.  Furthermore, brain metastatic human breast cancer cells treated with DAPT 

high lowhad reduced CD44 /CD24  CSC populations compared with non-treated cells and inhibited 
57brain metastasis in an experimental murine model.  These results suggest that the Notch 

pathway can regulate the characteristics of breast CSC containing self-renewal and 

metastatic potential. 

Hedgehog Pathway

The Hedgehog (HH) pathway plays a key role in various biological processes, such as cell 
58differentiation, proliferation, and growth in normal or tumor cells.  The HH pathway is 

activated by binding of ligands to the Patched (PTCH) receptor and subsequently alleviating 
59,60inhibition of Smoothened (SMO).   Activation of SMO results in subsequent regulation of the 

expression of Gli transcription factors that are responsible for cancer cell proliferation, 
61–64apoptosis, and invasion.  Overexpression of molecules related with the HH pathway is 

65 66 67observed in CSC during chronic myeloid leukemia , medulloblastoma , skin cancer , etc. In 

breast cancer, the HH pathway activated in CSC and the mechanism underlying CSC self-

renewal has been revealed recently. Using breast tumor derived from xenografts, Liu et al., 

first reported that the expression level of PTCH1, Gli1, and Gli2 mRNA, which are associated 
58with the HH pathway, affects the CSC population as compared with the non-CSC population . 

Similarly, the expression level of PTCH1, SMO, Gli1, and Gli2 proteins increases in tumor 

spheres than in adherent cells in the breast cancer cell line MCF7. In addition, p63 is the sister 
68homolog of p53 and a master regulator of normal epithelial stem cell maintenance . p63 

directly regulates the expression of Shh, Gli2, and Ptch1, leading to tumorsphere formation in 
69transgenic mice with conditional overexpression of the ErbB2 oncogene.  Cyclopamine (CP), 

70an antagonist of the HH pathway, is an effective inhibitor of self-renewal of breast CSC.  

Furthermore, FOXC1 binds directly to Gli2 and regulates ALDH activity and tumor sphere 

forming ability via activation of SMO-independent HH signaling in basal-like breast cancer. 

Basal-like breast cancer, lack expression of hormone receptors and ErbB2 receptor, is 
71associated with poor prognosis in breast cancer.  Inhibition of the FOXC1/Gli2 pathway using 

anti-HH inhibitors can improve basal-like breast cancer treatment.

Growth factor Signaling Pathway through Nuclear Factor-Kappa B (NF-κB)

Currently, hyperactivation of NF-κB caused by growth factor stimulation plays a key role in 
- -CSC self-renewal. NF-κB activation increases in CD24 /Lineage  cell population compared 

with the other cell population, as revealed through in silico analyses using breast cancer cell 
14lines . Furthermore, the NF-κB pathway induced to express several inflammatory cytokines, 

32containing Interleukin-6 (IL-6), IL-8, and CCL5 in breast cancer cells . Because inflammatory 

cytokines function as paracrine factors secreted from their CSC niche cells, these 

observations suggest that NF-κB activation is a key factor for self-renewal of breast CSC and 
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maintenance of those niches. Further, I introduce growth factors we have found as factors 

activating NF-κB in breast CSC.

Neuregulin1(NRG)

NRG, also known as Heregulin (HRG), functions as a ligand of ErbB3/HER3 and activates 

the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway or the MEK/Erk signaling 
16,72pathway.  The expression of NRG is reported to correlate with clinical prognosis and 

chemotherapeutic resistance in several types of cancer, especially HER2-positive breast 

cancer. Our groups reported that NRG stimulation in breast cancer cell line MCF7 increased to 

form tumor spheres and expresses the stem cell marker Nanog in NRG-treated spheres; thus, 
16NRG may be related with initiation and undifferentiation of CSC.  Moreover, NF-κB was 

remarkably activated in NRG stimulation via the PI3K/Akt signaling pathway, leading to the 

formation of tumor spheres in primary breast tumor cells and tumor-initiating activity in 

xenograft models. The activated NRG/PI3K/NF-κB axis can induce IL8 mRNA expression, a 

regulator of self-renewal in BCSC-enriched populations. Other groups reported that NRG 
high 73treatment for breast cancer cell lines increase the CD44  cell population  and induction of 

EMT through activation of Snail expression or phosphorylated Smad2 via the PI3K/Akt 
74pathway.  These findings suggest that NRG through the PI3K/Akt/NF-κB signaling pathway 

has a significant effect on the maintenance and self-renewal ability of breast CSC. Cytokines 

secreted owing to NRG stimulation may function as autocrine factors and paracrine factors to 

stimulate to CSC niche.

IGF2

IGF2 is a member of the insulin family and binds to IGF-1 receptor (IGF-1R) homodimers or 
75,76IGF-1R and insulin receptor (IR) heterodimers.  Recent studies reported that the IGF-1R 

signaling pathway contributes CSC characteristics in several types of cancer. In lung 

adenocarcinoma, IGF-1R signaling pathway is required for chemotherapeutic resistance by 
77altering chromatin states or acquisition of CSC characteristics.  Similarly, IGF-1R 

accumulation induces the expression of FOXO3a protein (not the PI3K signaling pathway), 
78which confers radioresistance in glioma stem cells.  We reported that the IGF2/IGF-1R 

signaling pathway plays a key role in establishing tumor spheres of primary breast cancer 
34cells . IGF-1R was specifically upregulated in CSC-enriched populations in freshly obtained 

primary breast cancer cells. In addition, the IGF2/IGF-1R/PI3K signaling pathway induced the 

expression of the inhibitor of DNA binding protein 1 (ID1). Inhibitor of DNA-binding 1 (ID1) is a 

member of ID family proteins (ID1 ~ ID4) and is reported to function as master regulators for 
79 stemness of normal tissues or tumors. ID1 appeared to operate as a transcript regulator via 

upregulation of IGF2 mRNA itself, thereby probably leading to tumor sphere formation. In 

chemotherapy, treatment with an anti-human IGF1/2 antibody (KM1468) blocked 
hightumorigenesis derived from the IGF-1R  CSC-enriched population in a patient-derived 

xenograft (PDX) model. Hence, it is important that NRG1 stimulation may trigger a IGF2-ID1-

IGF2 positive feedback circuit for the maintenance for stemness of breast CSC (Figure 2). On 

the other hand, fusion genes involved in tumor progression were recently identified in several 
80types of tumors in lung cancer.  The CD74-NRG1 fusion gene has been reported by several 

81,82groups and its role of in lung and breast cancer has been investigated ; recently, the 
35relationship between this fusion gene and CSC has been reported . Overexpression of 

CD74-NRG1 in lung or breast cancer cell lines enhanced tumor sphere forming ability and 

tumor initiation in xenograft models. CD74-NRG1 expression promoted the expression of the 

secreted IGF2 and phosphorylation of its receptor, IGF-1R through the PI3K/Akt/NF-κB 

signaling pathway, leading to the formation of tumor spheres. This study suggests that CD74-

NRG1 fusion gene expression probably contributes to CSC maintenance via the IGF2/IGF-1R 

signaling pathway.
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Figure 2. Model of molecular mechanisms that stabilize the stemness of breast cancer cells. The 

HER2/HER3-PI3K-NF-κB pathway may trigger a IGF2-ID1-IGF2-mediated positive feedback circuit as a 

fundamental mechanism of stabilization of stemness. In addition, the HER2/HER3-PI3K-NF-κB pathway 

also leads to the production of many soluble factors that may regulate the surrounding CSC niche cells: 

cancer-associated fibroblasts (CAF), endothelial cells, immune cells, etc. KM1468 is human anti-IGF1/2 
34antibody and inhibits tumor initiating activity in breast cancer. This figure is adapted from Tominaga et al.  

Abbreviations: NRG1, Neuregulin1; PI3K, Phosphoinositide 3-kinase; NF-κB, nuclear factor-κB; I-κB, 

inhibitor of NF-κB; IGF2, Insulin growth factor 2; IGF1R, Insulin growth factor 1 receptor; ID1, inhibitor of 

DNA binding protein 1; AR; Amphiregulin; IL-20, Interleukin 20; VEGFA, vascular endothelial growth 

factor A; CCL12, Chemokine (C-C motif) ligand 12

Conclusion
This review is focused on breast CSC maintenance, including self-renewal ability through 

activation of signaling pathways in breast cancer. Robust autocrine or paracrine signaling, 

containing Wnt, Notch, Hedgehog and growth factor signaling pathways, is essential for the 

maintenance of breast CSC. Actually, multiple signaling pathways are complex and have 

cross-talk each other in cancer cells. For example, on cell lines from gastric 

adenocarcinomas, the expression of sFRP1 was induced by activated Hedgehog pathway, 
83which indicated that HH pathway induced Wnt pathway inactivation . Other group suggested 

that sonic hedgehog, HH pathway agonist, and Jagged 2 (JAG2), a Notch receptor, were able 

to reduce activated beta-catenin through SMO, leading to suppressing beta-catenin 
84transcription in tongue cancer . Since CSC might be thought to remain by activated or 

inactivated multiple signaling pathways in recurrence of breast cancer, it would be important 

to reveal cross-talk between signaling pathways on CSC to understand the mechanism of 

tumor recurrence.

In addition, growth factor-induced signaling pathways contribute to not only maintenance of 

breast CSC behavior, but also activation of CSC niches. Our reports using patient-derived 

breast cancer cells obtained from surplus surgical tumor tissues indicate that inflammatory 

cytokines and chemokines secreted from CSC niches regulate CSC maintenance through 

NF-κB activation.

To identify the specific signal pathway of CSC may probably help establish anti-cancer 

agents that do not affect normal tissues and somatic stem cells. Since it is possible to activate 

multiple and complex signaling pathways in CSC by various factors, it may be necessary to 

concurrently inhibit candidate targeting molecules, e.g., HER2/3, NRG, IGF-1R, IGF2, and 

ID1 in case of breast cancer. However, unresolved questions regarding how CSC are 

stimulated from their niche for the maintenance of their properties persist. Future studies are 

needed for novel therapeutic strategies to inhibit the bidirectional signaling pathway between 

CSC and their niche.
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